Refuse Incinerator District Heating Plant

In England, the city of Nottingham and Associated Heat Services, which is partly owned by the National Coal Board, are to pioneer a major new concept in large-scale urban heating and refuse disposal.

The city corporation is to build Britain's first combined refuse incinerator and district heating plant.

The incinerator will work in conjunction with a coal-fired boiler. The total unit will provide enough heat to meet the domestic, commercial and industrial needs of the equivalent of a town of 40,000 people.

This means it will be the largest district heating scheme in Britain and possibly in Europe. It is due to come into service in 1970, and will be completed by 1980.

The scheme is planned as an integral part of Nottingham's development and redevelopment projects, and will provide heat and hot water to council tenants; but the corporation also hopes to sell to industrial and commercial consumers, and to other domestic consumers.

Consumers will receive their heat through mains in the form of high-pressure, high-temperature water. Their purchases will be metered on an individual basis.

When the project is complete the incinerator will be able to burn 170,000 tons of refuse a year, which is equivalent to 40,000 tons of coal. The refuse will come both from the city, and, it is hoped, from neighboring authorities, and will provide up to two thirds of the total heat output.

The remaining third will be supplied by coal from the East Midlands coalfield on which Nottingham stands. It is estimated that by 1980 the scheme will be using about 20,000 tons of coal a year.

Smokestack Designed to Look Like Rocket

A 450-ft smokestack, part of a steam heating plant in Toronto, Ontario, Canada, has been designed to look like a "huge rocket poised for flight." The white concrete stack, when completed, will be the third tallest structure in the City.

The stack, to be raised on a 50-ft base, will be encased in four tapered fins that will be floodlit at night.

The fins are also designed to provide a constantly changing pattern of light on the shaft on sunny days.

A scale model of the stack is presently undergoing wind tunnel tests to study stresses it will have to withstand and also air currents which the fin design will create.