Air conditioning (also see Chilled Water, Cooling)

- Sapporo, Japan, 1969, Vol 55 No. 2 p 16
- University of Michigan, 1973, Vol 59 No. 1 p 11
- Washington, D.C., 1972, Vol 58 No. 2 p 8

Air pollution (see Pollution)

Air Quality Improvement—Carroll W. Easton, 1970, Vol 55 No. 3 p 20

Akagi, Senya—Sapporo, Japan: Start-up of New District Heating System, 1972, Vol 57 No. 4 p 12

Akron, Ohio, shredded solid waste as boiler fuel, 1973, Vol 59 No. 2 p 14

Alaska, University heating plant, 1972, Vol 57 No. 4 p 20

Automatic Boiler Installed at Seattle Steam Corp.—Frann W. Marshall, 1971, Vol 57 No. 1 p 14

Boilers

- Automatic, installation, 1971, Vol 57 No. 1 p 14
- Fuel (see Waste, Solid Waste, Incineration)
- High-duty radiation, 1970, Vol 55 No. 4 p 13
- Shredded solid waste, 1973, Vol 59 No. 2 p 14
- Water treatment, 1969, Vol 55 No. 2 p 21

Bosl, Joseph J.—Steam Service in Downtown Cleveland, Ohio, 1970, Vol 56 No. 2 p 14

Brown, E. Staples—University of Alaska Heating Plant, 1972, Vol 57 No. 4 p 20

Buckner, Donald F.—District Heating and Cooling at Century City (Los Angeles), 1971, Vol 56 No. 3 p 23

Building codes and standards, 1974, Vol 59 No. 3 p 7

Campus (see College, University, Dormitory, Institution)

Canada

- Ajax, Ont., Industrial Steam Limited, 1969, Vol 55 No. 1 p 11
- District heating potential, 1972, Vol 58 No. 2 p 17
- Hamilton, Ont., chilled water storage at McMaster University, 1970, Vol 56 No. 1 p 12
- Montreal, Que. solid waste system, 1971, Vol 56 No. 3 p 8

Carson, Fred W.—Economics of Chilled Water Storage, 1970, Vol 56 No. 1 p 12

“Carving” a trench for underground steam mains, 1971, Vol 57 No. 2 p 34

Century City (Los Angeles, Calif.), central heating-cooling, 1971, Vol 56 No. 3 p 23

Chilled water (also see Air Conditioning, Cooling)

- Los Angeles, Calif., 1971, Vol 56 No. 3 p 23
- McMaster University, 1970, Vol 56 No. 1 p 12
Nashville, Tenn., 1972, Vol 58 No. 2 p 20
Oklahoma City, 1970, Vol 55 No. 3 p 17
Pittsburgh, Pa., 1970, Vol 56 No. 1 p 9
Princeton University, 1972, Vol 58 No. 1 p 12
University of Louisville Medical Center, 1969, Vol 55 No. 2 p 30
University of Tennessee at Chattanooga, 1973, Vol 58 No. 3 p 14
Cleveland, Ohio (Cleveland Electric Illuminating Co.), estimating steam usage according to formulae, 1970, Vol 56 No. 2 p 14
Codes and standards for buildings, 1974, Vol 59 No. 3 p 7
College (see Campus, University, Dormitory, Institution)
Condensate
Boiler treatment, 1969, Vol 55 No. 2 p 26
Return lines, 1973, Vol 58 No. 4 p 13
Conservation (see Energy, Energy Conservation)
Control of steam water heaters by radio, 1969, Vol 55 No. 1 p 14
Costs (see Economics)
Crooks, Clement W.-
Pyrolysis Solid Waste System, LANDGARD, in Baltimore, 1974, Vol 59 No. 3 p 12
Rebirth of Steam in Baltimore, 1971, Vol 56 No. 3 p 12
Crosby, George B.-Hospitals' Laundry Added to Steam Service in Piqua, Ohio, 1971, Vol 57 No. 1 p 10
Curing concrete with steam, 1973, Vol 58 No. 4 p 35

D
Demand control of steam water heaters by radio, 1969, Vol 55 No. 1 p 14
Depreciation for taxes, 1970, Vol 56 No. 1 p 30

Design Consideration for Quieter Steam Reducing Stations—Moustafa A. Zaki, 1972, Vol 57 No. 3 p 12
Detroit, Mich. (Detroit Edison Co.)
Blower for manholes, tunnels, 1970, Vol 56 No. 1 p 16
Radio controlled water heaters, 1969, Vol 55 No. 1 p 14

District Heating and Cooling at Century City (Los Angeles)—Donald F. Buckner, 1971, Vol 56 No. 3 p 23

E
Easton, Carroll W.—Air Quality Improvement, 1970, Vol 55 No. 3 p 20
Ecology (see Environment)
Economics (see Costs)
Economics of Chilled Water Storage—Fred W. Carson, 1970, Vol 56 No. 1 p 12
Energy conservation, ECON-I, 1974, Vol 59 No. 3 p 35

England, Gerald M.—University of Alaska Heating Plant, 1972, Vol 57 No. 4 p 20
Environment (see Ecology)
Estimating steam needs according to formulae, 1970, Vol 56 No. 2 p 14

Europe
Incineration-heat recovery (see Incineration)
Interest in district heating, 1971, Vol 57 No. 2 p 27
New trends in heating, 1971, Vol 56 No. 4 p 22

Systems
Berne, Switzerland, 1970, Vol 55 No. 4 p 13
Finland, 1973, Vol 59 No. 2 p 17
Nottingham, England, 1974, Vol 59 No. 4 p 14
Sweden, 1973, Vol 59 No. 2 p 22
Vienna, Austria, 1971, Vol 56 No. 4 p 12
Expansion joints
Ball-type installation, 1971, Vol 56 No. 3 p 23
Packed slip-type, 1971, Vol 56 No. 4 p 28

Exposing an Active High-Pressure Steam Line—Nelson R. Tonet, 1971, Vol 56 No. 3 p 20

Ferris State College—Donald K. Miller, 1973, Vol 58 No. 4 p 13

Finland, District Heating in—U. Halme, 1973, Vol 59 No. 2 p 17

Foreign systems (also see Europe, Incineration-Heat Recovery)

Franklin Station, Rochester, Minn.—William D. Latham, 1974, Vol 59 No. 3 p 20

Fuel (see Waste, Solid Waste, Incineration)

Heat and power station in Berne, Switzerland, 1970, Vol 55 No. 4 p 13

Heaters, water
Instantaneous, storage, combination storage tank and separate instantaneous, 1969, Vol 55 No. 2 p 32
Radio control units, 1969, Vol 55 No. 1 p 14
High-pressure steam line, exposing an active, 1971, Vol 56 No. 3 p 20

Hospital Boiler Plant at Cresson, Pa.—Ned H. Stokes, 1971, Vol 57 No. 2 p 8

Hospitals' Laundry Added to Steam Service in Piqua, Ohio—George B. Crosby, 1971, Vol 57 No. 1 p 10

Hot water heating systems (also high-temperature hot water)
Century City, Calif., 1971, Vol 56 No. 3 p 23
Finland, 1973, Vol 59 No. 2 p 17
Sapporo, Japan, 1969, Vol 55 No. 2 p 16; 1972, Vol 57 No. 4 p 12
Sweden, 1973, Vol 59 No. 2 p 22
University of Tennessee at Chattanooga, 1973, Vol 58 No. 3 p 14
University of Utah, 1969, Vol 55 No. 2 p 30
Humidification by steam in Lansing, Mich., 1973, Vol 58 No. 4 p 8

Incineration-heat recovery (also see Waste, Solid Waste, Refuse)
Canada and Holland, 1974, Vol 59 No. 4 p 32
Japan, 1974, Vol 59 No. 4 p 22
LANDGARD pyrolysis system, 1972, Vol 57 No. 3 p 26; 1974, Vol 59 No. 3 p 12
Montreal, Que., Canada, 1971, Vol 56 No. 3 p 8
Nottingham, England, 1974, Vol 59 No. 4 p 14
Switzerland, 1970, Vol 55 No. 4 p 13; 1974, Vol 59 No. 4 p 32
Vienna, Austria, 1971, Vol 56 No. 4 p 12

Indianapolis, Ind. (Indianapolis Power & Light Co.), growth of steam system, 1973, Vol 58 No. 3 p 22

Insulation
- ECON-I, 1974, Vol 59 No. 3 p 35
- Hot water system pipelines, 1973, Vol 59 No. 2 p 18

J
- Jacobs, Foster—Princeton University’s Central Utility Plant, 1972, Vol 58 No. 1 p 12
- Japan (see Foreign Systems)
- Joints (see Expansion Joints)

K
- Kirshner, Marvin—Steam Generation from Incinerators, 1971, Vol 56 No. 3 p 8

L
- LANDGARD solid-waste pyrolysis system
 - Development of, 1972, Vol 57 No. 3 p 26
 - Installation in Baltimore, Md., 1974, Vol 59 No. 3 p 12
- Lansing, Mich. (Board of Water and Light)
 - Snow-melt system, 1972, Vol 57 No. 3 p 21
 - Steam Humidification in, 1973, Vol 58 No. 4 p 8
 - Service in, 1970, Vol 55 No. 3 p 10
- Latham, William D.—Franklin Station, Rochester, Minn., 1974, Vol 59 No. 3 p 20
- Laundry, hospitals’ added to steam service, 1971, Vol 57 No. 1 p 10
- Lines (see Distribution, Mains, Networks, Piping, Pipelines)
- Los Angeles, Calif., district heating and cooling at Century City, 1971, Vol 56 No. 3 p 23

M
- Mains (also see Distribution, Lines, Networks, Piping, Pipelines)
 - Exposing an active high-pressure steam, 1971, Vol 56 No. 3 p 20
 - Trench for underground, 1971, Vol 57 No. 2 p 34
- Malfitani, Louis—
 - Sapporo, Japan $14-Million Plant Could Be Model for Future Installation, 1969, Vol 55 No. 2 p 16
 - Sapporo, Japan: Start-up of New District Heating System, 1972, Vol 57 No. 4 p 12
- Manhole and tunnel blower, 1970, Vol 56 No. 1 p 16
- Marquette University Constructs Facilities to Purchase Steam from Wisconsin Electric Power Co.—Charles F. North, 1970, Vol 55 No. 4 p 10
- Miller, Donald K.—Ferris State College, 1973, Vol 58 No. 4 p 13

N
- Nashville, Tenn., heating-chilled water plant fueled with solid waste, 1972, Vol 58 No. 2 p 20
- New Concept in System Demand Control, Radio Control Unit—John P. Hartwig, 1969, Vol 55 No. 1 p 14
- Newton, Wilbur E.—University of Vermont Central Heating Plant, 1972, Vol 58 No. 2 p 12

160
New York City, carving a trench for steam mains, 1971, Vol 57 No. 2 p 34

Noise pollution, 1972, Vol 57 No. 3 p 12

North, Charles F.—Marquette University Constructs Facilities to Allow Steam to be Purchased from Wisconsin Electric Power Co., 1970, Vol 55 No. 4 p 10

Pittsburgh, Pa.

Exposing an active high-pressure steam line, 1971, Vol 56 No. 3 p 20
Steam and chilled water installation, 1970, Vol 56 No. 1 p 9

Pollution
Noise, 1972, Vol 57 No. 3 p 12

Princeton University Central Utility Plant—Foster Jacobs, 1972, Vol 58 No. 1 p 12

R

Radio controlled water heaters, 1969, Vol 55 No. 1 p 14

Rebirth of Steam in Baltimore—Clement W. Crooks, 1971, Vol 56 No. 3 p 12

Recent Trends in Boiler Water Treatment and Other Trends in Boiler Treatment—Fred W. Wehking, 1969, Vol 55 No. 2 p 21

Redevelopment
Denver, Colo., 1972, Vol 57 No. 3 p 10

Reducing stations, design considerations for quieter, 1972, Vol 57 No. 3 p 12

Refuse (see Waste, Solid Waste, Incineration, Incinerator Plants, Heat Recovery)

Renewed Responsibilities of Packed Slip-Type Expansion Joints—Martin J. Hannah, 1971, Vol 56 No. 4 p 28

Rochester, Minn. (story of Franklin Station), 1974, Vol 59 No. 3 p 20

S

Sapporo, Japan: Start-up of New District Heating System—Senya Akagi and Louis Malfitani, 1972, Vol 57 No. 4 p 12

Seattle, Wash., boiler installation, 1971, Vol 57 No. 1 p 14

Snow melting in Lansing, Mich., 1972, Vol 57 No. 3 p 21

Solid waste (also see Waste, Refuse, Incineration, Incinerator Plant)

Akron, Ohio, 1973, Vol 59 No. 2 p 14
General data, 1970, Vol 56 No. 2 p 18; 1971, Vol 57 No. 2 p 27

LANDGARD pyrolysis system, 1972, Vol 57 No. 3 p 26; in Baltimore, Md., 1974, Vol 59 No. 3 p 12

Montreal, Que., Canada, 1971, Vol 56 No. 3 p 8

Nashville, Tenn., 1972, Vol 58 No. 2 p 20

Standards and codes for buildings, 1974, Vol 59 No. 3 p 7

Steam (see specific subjects such as Metering, Mains, Pipelines, Networks, Piping, etc.)

Steam Generation from Incinerators—Marvin Kirshner, 1971, Vol 56 No. 3 p 8

161
Steam Humidification in Downtown Lansing, Mich.—William D. Beauchaine, 1973, Vol 58 No. 4 p 8

Steam Service in Downtown Cleveland—Joseph J. Bosl, 1970, Vol 56 No. 2 p 14

Steam Service in Downtown Lansing—Roger A. Parsons, 1970, Vol 55 No. 3 p 10

Stokes, Ned H.—Hospital Boiler Plant at Cresson, Pa., 1971, Vol 57 No. 2 p 8

Storage tanks for chilled water, 1970, Vol 56 No. 1 p 12

Systems (see Air, Distribution, Chilled Water, Cooling, Heating, District Heating and Cooling, Steam, Waste, Solid Waste)

Swaty, Franz—Waste Heats Vienna, 1971, Vol 56 No. 4 p 12

T

Tax depreciation of (1) hot water (or steam) boiler plant; (2) underground main piping (hot water or steam); (3) indoor apparatus (heat exchangers and heat meters); 1970, Vol 56 No. 1 p 30

Tonet, Nelson, R.—Exposing an Active High-Pressure Steam Line, 1971, Vol 56 No. 3 p 20

Trench for underground steam mains, 1971, Vol 57 No. 2 p 34

Tunnel and manhole blower, 1970, Vol 56 No. 1 p 16

U

University (also see College, Campus, School, Dormitory, Institution)

Ferris State, 1973, Vol 58 No. 4 p 13

Marquette, 1970, Vol 55 No. 4 p 10

McMaster, 1970, Vol 56 No. 1 p 12

Princeton, 1972, Vol 58 No. 1 p 12

University of Alaska Heating Plant—Gerald M. England and E. Staples Brown, 1972, Vol 57 No. 4 p 20

University of Vermont Central Heating Plant—Wilbur E. Newton, 1972, Vol 58 No. 2 p 12

Urban renewal (see Redevelopment)

V

Valves, design considerations, for quieter steam reducing stations, 1972, Vol 57 No. 3 p 12

Vermont University central heating plant, 1972, Vol 58 No. 2 p 12

Vienna, Austria heated by waste, 1971, Vol 56 No. 4 p 12

W

Washington, D.C. district heating system, 1972, Vol 58 No. 2 p 8

Waste (also see Solid Waste, Refuse, Incineration, Heat Recovery)

Waste Heats Vienna—Franz Swaty, 1971, Vol 56 No. 4 p 12

Water (see Chilled Water, Hot Water)

Water heaters

Instantaneous, storage, combination storage tank and separate instantaneous, 1969, Vol 55 No. 2 p 32

Radio controlled units, 1969, Vol 55 No. 1 p 14

Webking, Fred W.—Recent Trends in Boiler Water Treatment and Other Trends in Boiler Treatment, 1969, Vol 55 No. 2 p 21

World-wide interest in district heating, 1971, Vol 57 No. 2 p 27

Z

Zaki, Moustafa A.—Design Considerations for Quieter Steam Reducing Stations, 1972, Vol 57 No. 3 p 12
FIVE-YEAR
SUBJECT AND AUTHOR INDEX
OF
ANNUAL PROCEEDINGS

Volumes LXI-LXV, 1970-1974 Inclusive
Additives for fuel oil, 1973 p 97

Advances in Cooling Tower Treatment from the Standpoint of Ecology—Charles E. Kellaway and Thomas A. McAllister, 1973 p 69

Air conditioning (also see Chilled Water, Cooling)
At York University, 1971 p 91
Chilled water plant in conjunction with total energy system, 1970 pp 48, 51
Chilled water service at Reston, Va., 1971 p 137

Comparative performance of chilled water systems, 1971 p 61

Machinery selection, 1974 p 87

New two-stage absorption water chiller (Trane), 1973 p 56

Trends, 1974 p 93

Air pollution (also see Pollution)

Control, 1973 p 37
In Europe, 1972 p 186
In Toronto, Ont., Canada, 1974 p 41

Air systems, 1973 p 64

Aldridge, L. L.—Considerations in the Specification of Pipeline Noise, 1972 p 112

Alignment guide failure and in-service repair, 1970 p 83

Alston, Norman A.—
Btu Measurement for Total Energy Systems, 1972 p 82
Hot and Chilled Water Measurement, 1971 p 49

Amended Constitution and By-Laws, 1970, p 169

Analysis, economic and design, of materials for a typical distribution system, 1970 p 115

Analysis of a district heating system, 1974 p 55

Analytical Techniques for Evaluating the Economic Feasibility of Purchased Chilled Water and Steam—Ross F. Meriwether, 1972 p 166

Angelery, Henry W.—Don't Store Hot Water: Balance It, 1971 p 66

Apartments

Hot water usage, 1971 p 81
Water heating equipment, sizing, 1970 p 92

Automatic Monitoring and Control System for Walt Disneyworld, Florida—Arthur Orenberg, 1972 p 132

Automatic Recirculation Valve for Centrifugal Feed Pump Protection—Jay F. Barclay, 1972 p 49

AuWerter, Jay P.—Cause of Hunting, Methods to Avoid Hunting, and Safety Features of Normally Closed Reducing Valves, 1972 p 43

Avenue “C” Expansion Joint Failure (New York City)—Arthur J. Bennett, 1973 p 42

Avers, Carl E.—

Central Heating and Cooling Services Project with Solid Waste Fueled Plant (Nashville, Tenn.), 1973 p 123

District Heating and Cooling with a Solid Waste Fueled Plant, 1974 p 49

B

Ball joints, off-set, for absorbing thermal expansion of piping, 1970 p 57

Ball-type expansion joints, 1972 p 106

Baltimore, City of, solid waste plant, 1974 p 34

Baltimore’s 24-Inch Steam Main—Clement W. Crooks, 1972 p 102

Barclay, Jay F.—Automatic Recirculation Valve for Centrifugal Feed Pump Protection, 1972 p 49

Bennett, Arthur J.—Avenue “C” Expansion Joint Failure (New York City), 1973 p 42

Berne, Switzerland district heating system, 1971 p 153

165

Boilers
Design, 1973 p 103
Efficiencies, 1973 p 40

Bosl, Joseph J.—Trends in Fuel Conversions, 1971 p 134

Boston, Mass. (Boston Edison Co.), total energy system, 1970 p 46

Btu Measurement for Total Energy Systems—Norman A. Alson, 1972 p 82
Btu measurement of hot and chilled water, 1971 p 49
Btu's, hoarding, for energy conservation at universities, 1974 p 85

Buffa, Michael A.—Live Tapping New Steam Services, 1974 p 72

Buildings
Design and operation of, for energy conservation, 1973 p 62
Environmental control systems, 1970 p 139
Insulation of piping (steam, hot and chilled water), 1973 p 50
Sizing of service water heating equipment in commercial and institutional, 1970 p 92

Buss, Theodor F.—LANDGARD, 1974 p 33

Cables, corrosion, catholic protection, 1972 p 98

Cahill, Jack A.—Steam Economy Through Air Conditioning Machinery Selection, 1974 p 87
Calculations, heat transfer between pipes, 1973, p 54

Callowhill, Frederick R.—Fuel Futures: Coal, 1971 p 109

Campus (also see College, University, School, Dormitory, Institution) utilities systems, planning, 1973 p 76

Case Histories and Experiences with Corrosion and Cathodic Protection in Buried Utilities—John L. Fitzgerald, 1972 p 88

Cathodic protection of buried utilities, 1972 p 88

Cause of Hunting, Methods to Avoid Hunting, and Safety Features of Normally Closed Reducing Valves—Jay P. Auwerter, 1972 p 43

Central Heating and Cooling Services Project with Solid Waste Fueled Plant (Nashville, Tenn.)—Carl E. Avers, 1973 p 123

Central plant and distribution system at York University, 1971 p 91

Chicago, Ill. refuse burning plant, 1970 p 164

Chilled water (also see Air Conditioning, Cooling)
Distribution systems, comparative performance of, 1971 p 61
Economic feasibility of purchased, 1972 p 166
Insulation of piping, 1973 p 50

Lincoln Center, New York City, 1970 p 143
Lines, corrosion, cathodic protection of, 1972 p 95

Model systems, 1974 p 53
Nashville, Tenn. solid waste plant, 1974 p 49
Plant Equipment, 1970 pp 48, 51
With heat recovery, 1972 p 56
Public utility, Reston, Va., 1971 p 137
Schedule of charges, 1970 p 51
Systems, 1973 pp 64, 150
Toronto, Ont., Canada, study of, 1974 p 37
Chiller, two-stage absorption (Trane Co.), 1973 p 56

Clark, John A.—Condensate Cooling and Drainage from Steam Heated Domestic Water Heaters, 1971 p 85

Coal’s future, 1971 p 109

Cofield, William W.—Gas Situation in the United States, 1971 p 124

College (see Campus, University, School, Dormitory, Institution)

Commercial buildings, sizing water heating equipment, 1970 p 92

Comparative Performance of Chilled Water Distribution Systems—Albert M. Schlosberg, 1971 p 61

Of energy fuel resources in United States, 1971 p 110

Competitor for district heat: heat by light, 1970 p 42

Computer Analysis of steam system, 1974 p 55
For hot and chilled water measurement, 1971 p 49
Installation for measurement of widely varying steam flow, 1971 p 45
Mini, for measurement and control, 1972 p 85

Monitor and control system
University multi-building, 1972 p 121
Walt Disneyworld, Florida, 1972 p 132

Programs for design of piping networks, 1971 p 53

Condensate Economics of returning, 1970 p 110

Lines Corrosion, cathodic protection of, 1972 p 88
Installation of, 1972 p 108

Metering Workshop (maintenance, testing, placement of condensate meters), 1970 p 131

Condensate Cooling and Drainage from Steam Heated Domestic Water Heaters—John A. Clark, 1971 p 85

Conduit systems, corrosion, cathodic protection, 1972 p 90

Connected load statistics (see Customers)
Connections (see Customers)

Conservation (also see Energy, Energy Conservation)
And the environment, 1972 p 183
Of energy At universities, 1974 p 85
By the total utility, 1972 p 211

Considerations in the Specification of Pipeline Noise—L. L. Aldridge and J. H. Cooper, 1972 p 112

Constitution and By-Laws, amended, 1970 p 169

Control Systems, environmental, 1970 pp 53, 139
Valves for steam, 1972 p 146

Cooling (also see Air Conditioning, Chilled Water)

Pipelines, combined installations in different services, 1973 p 49
Plant fueled by solid waste, 1973 p 123

Tower treatment from ecology standpoint, 1973 p 69
Cooling-heating service to Lincoln Center, New York City, 1970 p 143

Cooper, J. H.—Considerations in the Specification of Pipeline Noise, 1972 p 112

Corrosion and cathodic protection in buried utilities, 1972 p 88

Costs (also see Economics)
Annual operating of campus utilities systems, 1973 p 84
Comparative, types of systems, 1974 p 44
Design and construction of steam main installation, 1972 p 111
Environmental, 1972 p 38
Estimate of campus utilities construction, 1973 p 84
Incinerator, 1970 pp 107, 161
Of chilled water plant, 1972 p 58
Owning and operating Buildings, 1973 p 67
Total energy facilities, 1970 p 49

Crooks, Clement W.—Baltimore’s 24-Inch Steam Main, 1972 p 102

Cross, James S.—Residual Fuel Oil Problem, 1971 p 115

Design
Analysis of materials for an underground distribution system, 1970 p 115
Chilled water plant, 1972 p 57
Piping networks by digital computer program, 1971 p 53
Standards, buildings, for energy conservation, 1973 p 65

Detroit, Mich. (Detroit Edison Co.)
Economics of returning condensate, 1970 p 110
Heat by light, competitor for district heat, 1970 p 42

Digital Control Valve for Steam—H. Friedland, A. W. Langill and L. F. Reeves, 1972 p 146

Disposal, waste surveys, 1970 p 124

Distribution
Piping
Combined installation of heating and cooling pipelines in different services, 1973 p 49
Network design by digital computer program, 1971 p 53
Plant additions (see Boiler Capacity)
Pressures (see Distribution Piping Statistics)

Systems
Analysis of materials for typical system, 1970 p 115
Ball joints, 1970 p 57
Comparative performance of chilled water, 1971 p 61
Comparison of systems in U.S.A. and the world, 1970 p 65
Corrosion, cathodic protection, 1972 p 88
In-service repair, 1970 p 83
In U.S.A. and world, comparison of, 1970 p 65
York University, 1971 p 91

District Heating and Cooling with a Solid Waste Fueled Plant—Carl E. Avers, 1974 p 49

District heating study (Toronto, Ont., Canada), 1974 p 37
Domestic hot water (see Service Hot Water, Hot Water, Water, Water Heaters)
Domestic steam water heaters, condensate cooling and drainage from, 1971 p 85

Don’t Store Hot Water: Balance It—Henry W. Angelery, 1971 p 66

Dormitories (also see Campus, College, University, School, Institution)
High-rise, total energy plants, 1972 p 160
Sizing of service water heating equipment, 1970 p 92

Drainage from steam heated domestic water heaters, 1971 p 85

Energy

Economics (also see Costs, Revenue), 1972 pp 30, 38, 183
Economics of total energy plants, 1970 p 49
Economy through air conditioning machinery selection, 1974 p 87
Electric heating, 1974 p 37
Emission control (see Pollution, Pollution Control)

Energy
Conservation, 1973 p 135
At universities, 1974 p 85
By design and operation of buildings, 1973 p 62
By MIUS (Modular Integrated Utility System), 1974 p 30
Total utility, 1972 p 211
Estimate of demand, 1973 p 83
From waste incineration (see Incineration, Refuse, Solid Waste, Waste, Wood-Waste)
Fuel resources of United States, 1971 p 109
New sources of, 1973 p 140
Production by electrothermal plants, 1974 p 112
Requirements for boilers, 1973 p 36
Savings, future potential, 1973 p 35
Systems, total Btu measurement for, 1972 p 82
Total, and district heating, 1970 p 46

Energy Conservation (Keynote Address)—John G. Muller, 1973 p 33

Energy, Ecology and Economics (Keynote Address)—Joseph A. Lieberman, 1972 p 30

Engineering Approach to Environmental Control—William J. Moroz, 1970 p 53

Environmental control, 1970 p 53

Environment (also see Ecology), 1972 pp 30, 38, 183

Environment and energy, 1973 p 132

Environment and What It Costs—James J. O’Connor, 1972 p 38
European district heating, 1972 p 183
Expansion joints
 Ball-type, 1970 p 57; 1972 p 106
 Failure in New York City, 1973 p 42

F
Feasibility of Refuse Fuel for District Heating—Marvin Kirshner, 1971 p 143
Fiberglass Reinforced Plastic Pipe and the Heating Industry—John M. McKeown, 1974 p 69
Fitzgerald, John H.—Case Histories and Experiences with Corrosion and Cathodic Protection in Buried Utilities, 1972 p 88
Flow measurement
 Computer installation for widely varying steam flow, 1971 p 45
 Fluid, 1973 p 88
 Reversing steam flow, 1970 p 132
 Simplified steam flow, 1972 p 79
Food service, sizing of water heating equipment, 1970 p 92
Friedland, H.—Digital Control Valve for Steam, 1972 p 146
Fuel
 Conversion trends, 1971 p 134
 Oil
 Additives, 1973 p 97
 Installation and insulation of oil pipelines, 1973 p 49
 Residual problem, 1971 p 115
 Resources of United States, 1971 p 109
 Supplies, 1972 pp 187, 213
Fuel Futures: Coal—Frederick R. Callowhill, 1971 p 109

G
Gas pipelines, corrosion, cathodic protection of, 1972 p 99
Generating capacity increase, decrease (see Boiler Capacity)
Generation of energy from wood-waste, 1973 p 109
Gillespie, Robert D.—Toronto District Heating Study, 1974 p 37
Goldsworthy, Charles N.—Heat by Light: Another Competitor for District Heat, 1970 p 42
Growth, business (see Business Statistics of Industry)

H
Hansen, Erwin G.—Discussion of the paper District Heating and Total Energy, by J. W. Megley, 1970 p 52
Masterplanning of Campus Utilities Systems, 1973 p 76
Harrisburg, Pa. (Commonwealth of Pennsylvania) chilled water plant, 1972 p 56
Hart, Dick E.—World-Wide Position of District Heating and Its Concomitant Responsibilities, 1970 p 37

Haus Rath, Richard W.—Economics of Returning Condensate, 1970 p 110

Heat, heating
Distribution systems, corrosion, cathodic protection, 1972 p 88
Losses, 1972 pp 186, 195, 200, 205
Pipelines, combined installations in different services, 1973 p 49
Recovery, chilled water plant, 1972 p 56
Season degree-days (see Degree-Days)
Transfer between pipes, 1973 p 54

Heaters, hot water
Condensate cooling and drainage from, 1971 p 85
Heat balance method for sizing, 1971 p 66
Sizing for commercial and institutional buildings, 1970 p 92

Heating-cooling service to Lincoln Center, New York City, 1970 p 143

Henderson, John H.—Combined Installation of Pipelines in Different Services: Heating and Cooling, 1973 p 49

Hickman, H. Lanier—Solid Waste Management, 1971 p 35

High-rise dormitories, total energy plants, 1972 p 160

Hospital and nursing home hot water usage, 1971 p 76

Hot and Chilled Water Measurement—Norman A. Alston, 1971 p 49

Hotel, motel hot water usage, 1970 pp 92, 94; 1971 p 80

Hot water
Generation (see Statistical Committee Report)

Heaters (see Heaters)
Measurement, 1971 p 49; 1972 p 83
Piping, installation and insulation of, 1973 p 49
Supply and consumption, 1971 pp 66-84
Systems, 1973 pp 64, 79, 150
Usage: hospitals, nursing homes, schools, hotels, motels, apartments, office buildings, restaurants, 1971 pp 66-84

Hromek, Rostislav—Toward Future Utilization of Joint Energy Production by Electrothermal Plants, 1974 p 112

I

Incinerator plants
Baltimore, Md., 1974 p 34
Chicago, Ill., 1970 p 162
Montreal, Canada, 1970 p 105
Nashville, Tenn., 1973 p 123; 1974 p 49
Norfolk, Va., 1970 p 153

Installation of pipelines in different services (steam, hot and chilled water, fuel oil), 1973 p 49

Institutional (also see Campus, College, University, School, Dormitory)
Buildings, sizing water heating equipment, 1970 p 92
Heating system design, 1971 p 53

Instruments, measurement (see Meters, Metering)

Insulation
Cathodic protection, 1972 p 88
Comparison of types, 1972 pp 103, 194
Of pipelines (steam, hot and chilled water, fuel oil), 1970 p 65; 1973 p 49

It Matters Where You Locate a Chilled Water Meter—Donald L. Pollard, 1974 p 97

J

Joints (see Expansion Joints)

K

Kellaway, Charles E.—Advances in Cooling Tower Treatment from the Standpoint of Ecology, 1973 p 69

Kirshner, Marvin—Feasibility of Refuse Fuel for District Heating, 1971 p 143

Knapp, Hubert J.—Toronto District Heating Study, 1974 p 37

LANDGARD—Theodor F. Buss, 1974 p 33

Langill, A. W.—Digital Control Valve for Steam, 1972 p 146

Leduc, Albert—New Montreal Incinerator, 1970 p 105

Light, heat by, 1970 p 42

Lincoln Center, New York City, heating and cooling, 1970 p 143

Lines (also see Distribution, Mains, Networks, Piping, Pipelines)

Combined installation in different services, 1973 p 49

Corrosion and cathodic protection of, 1972 p 88

Live tapping of new, 1974 p 72

Live Tapping New Steam Services—Michael A. Buffa, 1974 p 72

Losses, heat, 1972 pp 186, 195, 200, 205

Lost business (see Business Statistics of Industry)

Loughery, Thomas M.—Twenty-Inch Alignment Guide Failure and In-Service Repair, 1970 p 83

Lyles, P. A.—York University Central Utilities Building and Distribution System, 1971 p 91

M

Mains (also see Distribution, Lines, Networks, Piping, Pipelines)

Alignment guide failure and in-service repair, 1970 p 83

Combined installation in different services, 1973 p 49

Corrosion, cathodic protection of, 1972 p 88

Heat, 1972 p 183

Installation of 24-inch steam, in Baltimore, 1972 p 102

Live tapping, 1974 p 72

Manholes, 1972 p 107

Market analysis, air conditioning equipment, 1974 p 87

Masterplanning of Campus Utilities Systems—Erwin G. Hansen, 1973 p 76

Maximum hourly send-out (see Statistical Committee Report)

Maximum hourly send-out capacity (see Statistical Committee Report)

Maximum possible hourly steam generating capacity (see Statistical Committee Report)

Meakim, John T.—Modern Fuel Oil Additives, 1973 p 97

Measurement (also see Meters, Metering)

Fluid flow, 1973 p 88

Hot and chilled water, 1971 p 49

Pipeline noise, 1972 p 112

Steam flow, widely varying, 1971 p 45

Meriwether, Ross F.—Analytical Techniques for Evaluating the Economic Feasibility of Purchased Chilled Water and Steam, 1972 p 166

Metering (also see Meters, Measurement)
 Btu, for total energy systems, 1972 p 82
 Condensate, 1970 p 131
 Fluid flow, 1973 p 88
 Heat and chilled water, Lincoln Center, 1970 p 143
 Hot and chilled water, 1971 p 49
 Reversing steam flow, 1970 p 132
 Steam, pressure regulating valves role in, 1970 p 138

Meters (also see Metering, Measurement)
 Chilled water installation, 1974 p 97
 Duplex recording flow computer installation for measurement of widely varying steam flow, 1971 p 45
 Simplified steam flow measurement, 1972 p 79

Milusich, John—What is New Around the World, 1970 p 90

Minimum temperature, day of maximum hourly send-out (see Statistical Committee Report)

MIUS: Modular Integrated Utility System (Keynote Address)—Clinton W. Phillips, 1974 p 30

Modern Fuel Oil Additives—John T. Meakim, 1973 p 97

Monitoring and control systems
 University of Massachusetts multi-building, 1972 p 121
 Walt Disneyworld, Florida, 1972 p 132
 Montreal incinerator, 1970 p 105

Moroz, William J.—Engineering Approach to Environmental Control, 1970 p 53

Motels
 Hot water usage, 1971 p 80
 Water heating, 1970 p 92

Muller, John G.—Energy Conservation, 1973 p 33

Multi-Building Monitoring and Control System at the University of Massachusetts—Lionel D. Paradis, 1972 p 121

Mc

McAllister, Thomas A.—Advances in Cooling Tower Treatment from the Standpoint of Ecology, 1973 p 69

McKeown, John M.—Fiberglass Reinforced Plastic Pipe and the Heating Industry, 1974 p 69

N

Nashville, Tenn. (Nashville Thermal Transfer Corp.) solid waste fueled central heating and cooling plant, 1973 p 123; 1974 p 49

Networks, piping design by digital computer programs, 1971 p 53

New business (see Business Statistics of Industry)

New Montreal Incinerator—Albert Leduc, 1970 p 105

New Two-Stage Absorption Water Chiller (Trane Co.)—Warren E. Farwell, 1973 p 56

New York City (Consolidated Edison Co.)
 Expansion joint failure, 1973 p 42
 Heating-cooling service to Lincoln Center, 1970 p 143
 Live tapping new steam services, 1974 p 72

Noise, pipeline, 1972 p 112

Norfolk, Va. (U.S. Naval Base) refuse-burning plant, 1970 p 153

173
Nuclear heat, power, 1972 p 189; 1973 p 138; 1974 p 46

Nursing homes
 Hot water usage, 1971 p 76
 Sizing service water heating equipment, 1970 p 92

O'Connor, James J.—Environment and What It Costs, 1972 p 38

Office buildings (also see Buildings)
 Hot water usage, 1971 p 81
 Sizing service water heating equipment, 1970 p 92

Off-Set Ball Joints for Absorbing Thermal Expansion of Piping—Milton F. Zimmer, 1970 p 57

Ohio State University, total energy plants in high-rise dormitories, 1972 p 160

Oil
 Additives, modern, 1973 p 97
 Residual problem, 1971 p 115

Old business (see Business Statistics of Industry)

Operation and design of buildings for energy conservation, 1973 p 62

Operation of a Large Central Chilled Water Plant with Heat Recovery—William L. Muschlitz, 1972 p 56

Paradis, Lionel D.—
 Multi-Building Monitoring and Control System at the University of Massachusetts, 1972 p 121
 Waste Disposal Surveys, 1970 p 124

Performance, comparative, of chilled water distribution systems, 1971 p 61

Performance of the Multi-Building Energy Conservation System, Johnstown Campus,

University of Pittsburgh—Warren L. Custer, 1972 p 63

Pipelines (also see Lines, Mains, Networks, Piping, Distribution)
 Corrosion and cathodic protection, 1972 p 88
 In different services (steam, hot and chilled water, fuel oil), 1973 p 49
 Installation of 24-inch in Baltimore (Baltimore Gas and Electric Co.), 1972 p 102
 Insulation of (see Insulation)
 Noise, 1972 p 112

Piping
 Fiberglass reinforced plastic, 1974 p 69
 Network design by digital computer programs, 1971 p 53
 Total system (see Statistical Committee Report)

Plant additions (see Business Statistics of Industry)

Plants (see Heat, Heating, Heat Recovery, Central, Chilled Water, Cooling, Incinerator, Nuclear, Solid Waste, Waste Heat)

Plastic pipe, fiberglass reinforced, 1974 p 69

Pollard, Donald L.—It Matters Where You Locate a Chilled Water Meter, 1974 p 97

Pollution (also see Air Pollution, Water Pollution, etc.)
 Air, 1972 p 186
 Considerations, 1973 p 75
 Control, 1973 p 135
 Water, 1972 p 188

Prague, Czechoslovakia, energy production by electrothermal plants, 1974 p 112

Pressure-flow response of steam and water systems, 1974 p 53

Pressure regulating valves, 1972 p 43

Pressures, steam distribution (see Statistical Committee Report)
Public utility, chilled water (Reston, Va. Air Conditioning Corp.), 1971 p 137

Pump protection, 1972 p 49

Pumps, sump, 1972 p 108

Purchased chilled water and steam, economic feasibility, 1972 p 166

Purchased Steam for Heating and Cooling at the Lincoln Center for the Performing Arts—Milton L. Schneider, 1970 p 143

Pyrolysis solid waste system, 1974 p 33

R

Radiation surface (see Statistical Committee Report)

Radiators, corrosion of piping, cathodic protection, 1972 p 94

Reardon, Francis X.—Refuse Burning: Norfolk and After, 1970 p 153

Reducing valves, 1972 p 43

Reeves, L. F.—Digital Control Valve for Steam, 1972 p 146

Reeves, Walter R.—Heat by Light: Another Competitor for District Heat, 1970 p 42

Refuse (also see Waste, Solid Waste, Incineration, Incinerator Plants, Heat Recovery)
 As fuel for district heating, 1971 pp 35, 143; 1974 pp 30, 33, 46, 49
 Heating study, 1974 p 46

Refuse Burning: Norfolk and After—Francis X. Reardon, 1970 p 153

Residual Fuel Oil Problem—James S. Cross, 1971 p 115

Restaurant hot water usage, 1971 p 82

Rochester, N.Y. (Rochester Gas and Electric Corp.), measurement of reversing steam flow, 1970 p 132

S

Sales, steam (see Steam Sales)

San Antonio, Texas (City Water Board), chilled water meter installation, 1974 p 97

Schlosberg, Albert M.—Comparative Performance of Chilled Water Distribution Systems, 1971 p 61

Schneider, Milton L.—Purchased Steam for Heating and Cooling at the Lincoln Center for the Performing Arts, 1970 p 143

Schools (also see Campus, College, University, Dormitory, Institution)
 Hot water usage
 Elementary and junior high, 1971 p 77
 Men’s dormitory, 1971 p 80
 Senior high and women’s dormitory, 1971 p 78
 Sizing of water heating equipment, 1970 p 92

Send-out, actual maximum hourly, maximum hourly capacity (see Statistical Committee Report)

Service hot water (also see Domestic Hot Water, Hot Water, Water, Water Heaters)
 Sizing of equipment for commercial and institutional buildings, 1970 p 92

Simplified Steam Flow Measurement—Bruce C. Toffelmier, 1972 p 79

Soil conditions, importance of when selecting a distribution system, 1972 p 196

Solid waste (also see Waste, Refuse, Incineration, Incinerator Plants, Heat Recovery)
 As fuel, 1974 pp 30, 33, 46, 49

Feasibility of use for district heating, 1971 p 143

Fueled plant, heating and cooling (Nashville, Tenn.), 1973 p 123; 1974 p 49

Management, 1971 p 35

Solid Waste Management (Keynote Address)—H. Lanier Hickman, 1971 p 35

Space heated (see Statistical Committee Report)
Spare capacity (see Statistical Committee Report)

Steam (also see specific subjects such as Metering, Mains, Pipelines, etc.)

Delivered to system (see Statistical Committee Report)

Distribution pressures (see Statistical Committee Report)

Economic feasibility of purchased for heating and chilled water cooling, 1972 p 166

Flow measurement, 1970 p 132; 1972 p 79

Heated domestic water heaters, 1971 p 85

Main installation, 24-inch, in Baltimore, 1972 p 102

Measurement for total energy systems, 1972 p 84

Use (see Statistical Committee Report)

Steam Economy Through Air Conditioning Machinery Selection—Jack A. Cahill, 1974 p 87

Study of district heating (Toronto, Ont., Canada), 1974 p 37

Systems (see Air, Distribution, Chilled Water, Cooling, Heating, District Heating-Cooling, Steam, Waste, Solid Waste)

Tanks, corrosion, cathodic protection, 1972 p 99

Telethermics, 1972 p 183

Temperature, minimum, day of maximum hourly send-out (see Statistical Committee Report)

Thermal

Emissions, 1973 p 138

Plants (electro), utilization of joint energy production, 1974 p 112

Transfer, 1973 p 126

Toffelmier, Bruce C.—Simplified Steam Flow Measurement, 1972 p 79

Toronto District Heating Study—Hubert J. Knapp, Robert D. Gillespie, Allan G. Turton, 1974 p 37

Total Energy, and District Heating—J. W. Megley, 1970 p 46

Total energy systems

As step toward energy conservation, 1972 p 211

Btu measurement for, 1972 p 82

In high-rise dormitories (Ohio State University), 1972 p 160

MIUS (Modular Integrated Utility System), 1974 p 30

Toward Future Utilization of Joint Energy Production by Electrothermal Plants—Rostislav Hromek, 1974 p 112

Towers, cooling, treatment of from ecology standpoint, 1973 p 69

Turton, Allan G.—Toronto District Heating Study, 1974 p 37

Twenty-Inch Alignment Guide Failure and In-Service Repair—Thomas M. Loughery, 1970 p 83

T

Underground distribution system, analysis of materials for a typical system, 1970 p 115

United Kingdom, district heating in, 1972 p 190

176
United States
 Solid waste problem, 1971 pp 35, 143
 Trends in fuel conversions, 1971 p 134

University (also see Campus, College, School, Dormitory, Institution)
 Conservation of energy, 1974 p 85
 Of Massachusetts, monitoring and control system, 1972 p 121
 Of Pittsburgh, Johnstown Campus, multibuilding energy conservation system, 1972 p 63
 Ohio State, total energy plants in high-rise dormitories, 1972 p 160
 Utilities systems, planning campus, 1973 p 76
 Waste disposal at Massachusetts, 1970 p 124
 Water heating equipment, sizing of, 1970 p 92
 York’s central utilities building and distribution system, 1971 p 91

Utilities systems, planning campus, 1973 p 76

Utility, public, air conditioning corporation (chilled water, Reston, Va., 1971 p 137

Valves
 Automatic recirculation valve for centrifugal feed pump protection, 1972 p 49
 Cause of hunting, methods to avoid hunting, and safety features of normally closed reducing valves, 1972 p 43
 Digital control valve for steam, 1972 p 146

Volume heated (see Statistical Committee Report)

W
 Walt Disneyworld, Florida automatic monitoring and control system, 1972 p 132

Waste (also see Solid Waste, Refuse, Incineration, Incinerator Plants, Heat Recovery)
 As fuel, 1974 pp 30, 33, 46, 49
 Heat, use of, 1973 p 139

Incineration, energy from, 1972 pp 207, 215
 Solid, fueled plant (Nashville, Tenn.), 1973 p 123; 1974 p 49
 Utilization for district heating, 1971 pp 35, 143
 Wood-waste for district heating, 1973 p 109

Waste Disposal Surveys (by University of Massachusetts)—Lionel D. Paradis, 1970 p 124

Water
 Chilled, public utility at Reston, Va., 1971 p 137
 Chiller, two-stage absorption (Trane Co.), 1973 p 56
 Heaters, 1971 pp 66, 85 (steam heated domestic)
 Heating equipment, sizing of, for commercial and institutional buildings, 1970 p 92
 Hot and chilled
 Btu measurement of, 1972 p 83
 Hot, supply and consumption, 1971 p 66
 Mains, corrosion, cathodic protection, 1972 p 96
 Measurement of hot and chilled, 1971 p 49
 Pollution (also see Pollution), 1972 p 188
 Systems, 1973 p 64; 1974 p 53

Weather statistics (see Degree-Days)

What is New Around the World—John Milusich, 1970 p 90
 Wood-waste (fuel for energy generation), 1973 p 109

World-wide Position of District Heating and Its Concomitant Responsibilities (Keynote Address)—Dick E. Hart, 1970 p 37

Y
 York University Central Utilities Building and Distribution System—P. A. Lyles and W. C. Dale, 1971 p 91

Z
 Zimmer, Milton F.—Off-Set Ball Joints for Absorbing Thermal Expansion of Piping, 1970 p 57